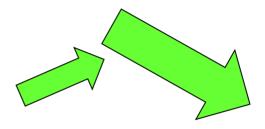
GUÍA DE APRENDIZAJE Recuperación SEGUNDO AÑO MEDIO "Semejanza de triángulos, Teorema de Thales"

Curso: 2º Medio		Fundación Nirvana	Fecha :
Asignatura :		MATEMÁTICAS	
Objetivos	 Reconocer los criterios de semejanza de triángulo y de proporcionalidad. Aplicar los criterios de semejanza de triángulos en solución de problemas. Desarrollar el Teorema de Thales mediante proporcionalidad, para aplicarlo a la resolución de problemas. 		

Semejanza

¿Son semejantes las siguientes figuras?



Concepto: dos figuras son semejantes cuando tienen la misma forma pero no necesariamente el mismo tamaño.

Definición geométrica: Dos figuras son semejantes cuando la razón entre las medidas de sus lados homólogos (correspondientes) son **proporcionales** y sus ángulos correspondientes son congruentes.

Semejanza de triángulos

Dos triángulos son semejantes si sus ángulos homólogos son iguales y sus lados correspondientes son proporcionales.

Criterios de Semejanza de triángulos

¿Cómo saber si dos triángulos son semejantes?

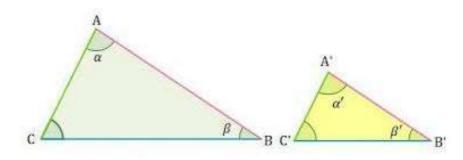
Existen algunos principios que nos permiten determinar si dos triángulos son semejantes sin necesidad de medir y comparar todos sus lados y todos sus ángulos. Estos principios se conocen como los criterios de semejanza de triángulos; éstos son:

1. Criterio AA

Dos triángulos son semejantes si tienen dos ángulos iguales.

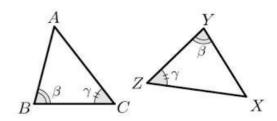
$$\alpha = \alpha'$$

 $\beta = \beta'$



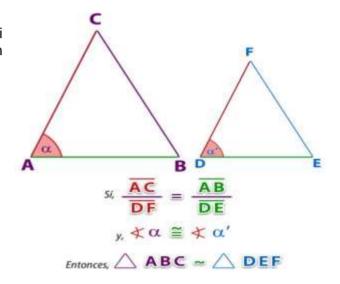
Entonces: ¿Son semejantes los siguientes triángulos?. ¿Tienen dos ángulos iguales?





2. Criterio LAL

Dos triángulos son semejantes si tienen dos lados proporcionales y un ángulo igual.



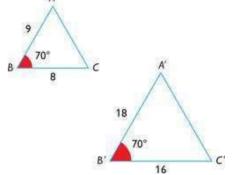
Entonces: ¿Son semejantes los siguientes triángulos?.

¿Cuál es el ángulo?,

¿Cuál es la proporción de sus lados?

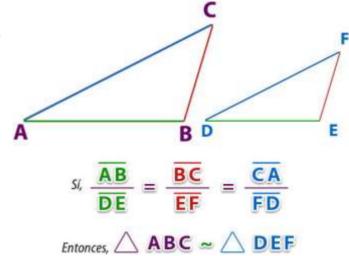
$$\frac{18}{9} =$$

$$\frac{16}{8} =$$

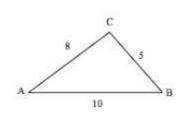


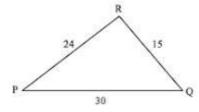
3. Criterio LLL

Dos triángulos son semejantes si sus tres lados son proporcionales.



Entonces: ¿Son semejantes los siguientes triángulos?.





¿Cuál es la proporción de sus lados?

$$\frac{24}{8} =$$

$$\frac{15}{5} =$$

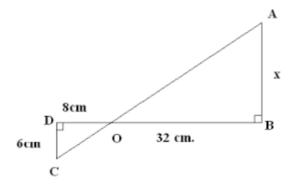
$$\frac{30}{10} =$$

Aplicando la Semejanza de triángulos

Ejemplo:

a) Se tiene la siguiente figura de dos triángulos unidos por el vértice. Ambos triángulos tienen dos ángulos iguales: los ángulos rectos y los ángulos unidos por el vértice; por lo tanto son triángulos semejantes.

Entonces para encontrar el lado x, se puede utilizar la relación de los lados proporcionales; es decir:

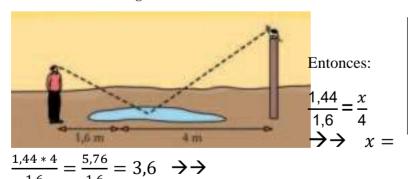


$$\frac{32}{8} = \frac{x}{6}$$

$$\Rightarrow \Rightarrow \quad x = \frac{32 * 6}{8} = \frac{192}{8} = 24 \ cm$$

por lo tanto, el valor de x es 24 cm.

b) El gato de Leticia se ha subido a un poste. Leticia puede ver a su gato reflejado en un charco. Toma las medidas que se indican en el dibujo y mide la altura de sus ojos: 144 cm. ¿A qué altura se encuentra el gato?

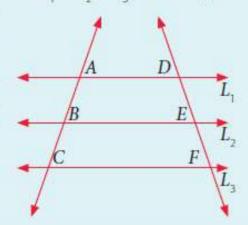


Los triángulos formados por Leticia y el charco y el poste con el charco, son rectángulos. Además, los ángulos que forman con el charco son iguales. Luego gato dos triángulos son semejantes. 3,6 metros de altura.

Conceptos

Teorema de Tales: Si dos o más rectas paralelas se intersecan por dos transversales, entonces las medidas de los segmentos determinados sobre las secantes son proporcionales.

Si $L_{_1} /\!/ L_{_2} /\!/ L_{_3}$ se tiene que:



$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$
o equivalentemente:

$$\frac{AB}{BC} = \frac{DE}{EF} \text{ y } \frac{AB}{AC} = \frac{DE}{DF}$$

jemplo 1

En la siguiente figura $L_1 /\!/ L_2 /\!/ L_3$, ¿que medida representa x?

Al utilizar el teorema de Tales, se tiene que:

$$\frac{AB}{DE} = \frac{BC}{EF}$$

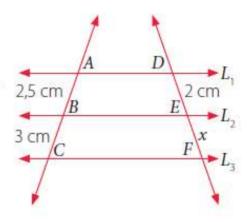
Luego, al remplazar las medidas, se obtiene lo siguiente:

$$\frac{2.5}{2} = \frac{3}{x}$$

$$x = \frac{2 \cdot 3}{2.5}$$

$$x = 2.4$$

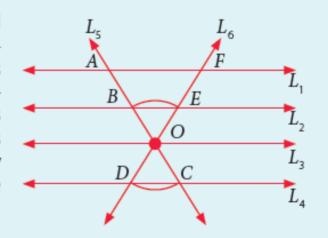
Respuesta: La medida de x es 2,4 cm.



Conceptos

Corolario del teorema de Tales: Si los lados de un ángulo o sus prolongaciones se cortan con varias rectas paralelas, las medidas de los segmentos que se determinan en los lados del ángulo son **proporcionales**, es decir, L_1 // L_2 // L_3 // L_4 y además L_5 y L_6 se intersecan con estas rectas, se cumple lo siguiente:

$$\frac{FE}{AB} = \frac{EO}{BO} = \frac{OD}{OC}$$



Calcula la medida de \overline{BD} .

Al aplicar el corolario, se tiene que:

$$\frac{AO}{BO} = \frac{OC}{OD}$$

Al remplazar las medidas, se tiene:

$$\frac{4}{6} = \frac{2}{OD}$$

Al resolver, se tiene:

$$OD = \frac{6 \cdot 2}{4} = \frac{12}{4} = 3$$

A B
4 cm 6 cm
AB // DC
2 cm
D C

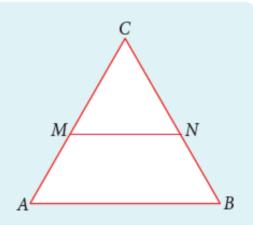
Respuesta: Como BD = BO + OD, se tiene que: BD = (6 + 3) cm = 9 cm.

Conceptos

PASO A PASO

El teorema particular de Tales establece que un segmento de recta paralelo a un lado de un triángulo y que interseca a los otros dos determina en estos últimos segmentos proporcionales. Por ejemplo, dado el triángulo ABC y \overline{AB} // \overline{MN} , entonces se cumplen las siguientes relaciones:

$$\frac{CM}{MA} = \frac{CN}{NB}$$
 $\frac{CM}{CA} = \frac{CN}{CB}$ $\frac{CM}{MN} = \frac{CA}{AB}$



El recíproco del teorema particular de Tales establece que si una recta corta dos lados de un triángulo y los divide en segmentos proporcionales, entonces esa recta es paralela al otro lado del triángulo.

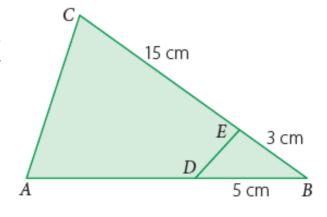
En la figura, ¿cuál es la medida del lado \overline{AD} para que \overline{AC} // \overline{DE} ?

Para que se cumpla que \overline{AC} // \overline{DE} , la medida de los segmentos sobre los lados \overline{AB} y \overline{CB} deben ser proporcionales, es decir:

$$\frac{CE}{EB} = \frac{AD}{DB}$$

Al remplazar los valores, se tiene que:

$$\frac{CE}{EB} = \frac{AD}{DB} > \frac{15}{3} = \frac{AD}{5} > AD = 25$$



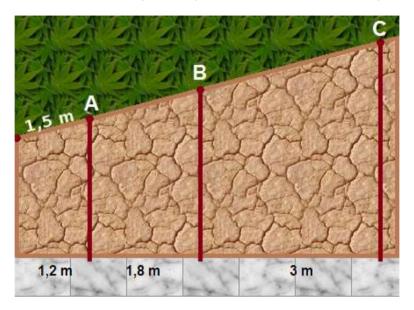
Respuesta: Para que \overline{AC} // \overline{DE} , se debe cumplir que la medida del segmento \overline{AD} sea de 25 cm.

Fiemplo 5

Aplicando la Semejanza de triángulos

Ejemplo:

En la imagen se muestra una pared en la que se ha trazado rectas perpendiculares a su base indicando la distancia entre ellas. En la parte superior se ha identificado los puntos A, B y C.



Luego, ¿qué distancia hay entre los puntos A y B?

Utilizando el teorema de Thales se puede establecer la siguiente relación de proporción:

$$\frac{AB}{1,5} = \frac{1,8}{1,2}$$

$$\Rightarrow \Rightarrow$$

→→
$$x = \frac{1,8 * 1,5}{1,2} = \frac{2,7}{1,2} = 2,25 m$$

por lo tanto, la distancia del segmento AB es de 2,25 m.

FIGURA	PROPORCIONES	EJEMPLO
p t ₁ t ₁ // t ₂	$\frac{p}{q} = \frac{r}{s}$	Por teoremade Thales: $\frac{3}{4} = \frac{x}{6} \rightarrow \frac{3 \cdot 6}{4} = x \rightarrow x = \frac{18}{4}$ $Asi x = 4,5 cm$
p t t ₁ t ₁ //t ₂	$\frac{p}{q} = \frac{r}{s}$	Por teoremade Thales: $ \frac{18}{12} = \frac{2x+3}{x+5} $ $ \rightarrow 18 \cdot (x+5) = 12 \cdot (2x+3) $ $ 18x+90 = 24x+36 \rightarrow 54 = 6x $ Así $x = 9$
L ₁	$\frac{p}{q} = \frac{r}{s}$	Por teoremade Thales: $\frac{x+2}{2x-1} = \frac{6}{8} \to 8 \cdot (x+2) = 6 \cdot (2x-1)$ $8x + 16 = 12x - 6 \to 22 = 4x$ $Asi x = \frac{22}{4} = 5,5$
B C C	$\frac{AB}{AB'} = \frac{AC}{AC'} = \frac{BC}{B'C'}$	Por teorema de Thales: $\frac{24 + x}{24} = \frac{25}{20} \rightarrow 20 \cdot (24 + x) = 25 \cdot 24$ $480 + 20x = 600 \rightarrow 20x = 600 - 480$ $20x = 120 \rightarrow x = 6$ Así $x = 6$ cm